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Enantioselective Total Synthesis of Bistramide A
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Bistramide A (1) is a member of a new class of bioactive o 8. Mey
molecules isolated from the marine ascidiassoclinum bistratum MGW'U,)LN s
The bistramides demonstrate significant neuro- and cytotoxic R o
properties as well as profound effects on cell cycle regulation. bistramide A (1)
particular, bistramide A has an 4gof 0.03—0.32 ug/mL for the | OH o
P388/dox, B16, HT29, and NSCIN6 cell lines3 Studies have o s.:Me, O Me.
shown that bistramide A is cell permeable, blocks sodium chafinels, Me«\)&/i(gm)kop : qN\/\‘?‘?H ol
and induces highly selective activation of a single protein kinase e, ° e © em N Im
C (PKC) isotyped.> The biological activity of bistramide A, as N on ¢ L

well as the other bistramides, has rendered them potential candidates s OH O
for the treatment of slowly evolving tumors, such as nonsmall cell
pulmonary carcinoma.

From the time of their original isolatiot®,the bistramides have = Scheme 1. Synthesis of Pyran 22

Figure 1. Retrosynthesis of bistramide A.

presented a challenging stereochemical conundrum. Synthetic efforts a JSL o OH b
toward the bistramidésvere hampered by the lack of information i Ot Er- S otrs ——
regarding their relative and absolute configuration prior to Wipf's ° s S)LNJK/Me o 7
theoretical and synthetic studi#& Kozmin and co-workershave \—/,,Bn 6
recently reported the first total synthesis of bistramide A, thus OH d-f 3-Me gh
8

confirming Wipf's prediction of the stereochemical assignment of E‘OECV/\H\AOT.F’S T a0 o oTes
bistramide C¢9 8 Me 9

Herein we disclose a convergent, enantioselective, total synthesis o o Me i ) 8. Meg, O
of bistramide A. At the onset of this project, the absolute e S A ~on Mewll,%op
configuration of bistramide A had not been established. Therefore, HoH 2 0

. . . 10
our goal was to devise a strategy that would allow either enantiomer a Conditions: (a) TiCJ, NMP, (~)-sparteine, ChClo, ~78°C, 6, 87%:
. s s U )™ 1 2, 1 Oy ’

of the three key subunits to be prepared, with the added requirementy,) i gi,AlH, THF, —78°C; (c) PAP=CHCOEt, CH,Cl,, 78% (two steps);
that either configuration at C39 could be accessed. Hence, it was(d) H,, Raney Ni, EtOH; (e) PPTS, GBIy, 40 °C, 81% (two steps); (f)
envisioned that bistramide A would derive from three fragments: i-BuAlH, pyridine, DMAP, AO, CH,Clp, =78 to—20°C, 96%; (9) EiN,

pyran2, carboxylic acid3, and spiroketal fragment (Figure 1). Z%E%T{ ;ﬂﬁ;‘ﬁg{éc’gﬁ* Ccf\l@gg%aer(‘l)_ :g?(ggétrgn C""gdcaNce;?%.
The pyran fragmen® was constructed as shown in Scheme 1. ) Nih)}droiysuccinin;idefED’(HCI,’ CHZC’|2’ 100%. R '
Exposure of aldehydé&® to the chlorotitanium enolate of-

propionyl thiazolidinethiones® proceeded smoothly (87%) with ~ Scheme 2. Preparation of Carboxylic Acid Fragment 3%

excellent diastereoselectivity-©8:2 dr). The chiral auxiliary was Ve

reductively cleaved, and the resulting aldehyde was exposed to pvBO A OH 2D S i L
PhP=CHCO,E to givea,S-unsaturated ethyl est8in 78% yield " y 12 OH e

over two steps. Hydrogenation of the resulting alkene provided the Me of ) re g-1 Wi oM
saturated ethyl ester, which was converted to the lactone in the HO TS = N3/\(I:;/OH _’ Fm°°NH/\(|;:\lgO
presence of PPTS. Reductive acylatfoof the lactone delivered 13 0TS 14 3

acetated as an inconsequential 7:1 mixture of anomers. Treatment  aconditions: (a).-(+)-DET, Ti(Oi-Pr), t-BuOOH, CHCl, 4 A sieves,
of acetated with the 2-trimethylsilyloxy-1,3-pentadierié,in the —20°C, 95%, 98% ee; (b) M€uLi, E£O, =50 °C to 25°C, 6:1 of 1,3-

presence of TMSOTH, installed the-unsaturated ketone moiety 2307 élz'(ddi)mb'gg& :2(73, b71f‘f%; (tSC)bI:I?S(ngéZ,g;;tidi(n‘;, ggls 0P°P%
. O \si . 0; . p uffer, b, 0 °C, b, (e ,

of pyran10in 8_7/0 ylgld (9:1 dr). The TIPS _et_her was removgd, (PhOYPONs, THF, 0°C, 90%: (f) CSA, MeOH, ChCly, 0 °C, 85%: (g)

and the resulting primary alcohol was oxidized to the &tid. NaClO, TEMPO, CHCN, 35°C, 95%: (h) HF/pyr., THF, 70%; (i) &

Esterification of the acid with hydroxysuccinimide gave pygan Pd/C, Fmoc-OSu, THF, 70%.

The synthesis of carboxylic acigibegan by transformation of
allylic alcohol 112 to the epoxy alcohol in 95% yield (98% ee) provided alcoholl3in 95% yield over two steps. The azide moiety
via a Sharpless asymmetric epoxidatio(Bcheme 2). Treatment  was then installed via a Mitsunobu reactibwith diphenylphos-
of the epoxy alcohol with lithium dimethylcuprate yielded the 1,3- phoryl azide, whereupon the primary TBS ether was selectively
diol accompanied by the undesired 1,2-diol (6:1). The minor isomer cleaved with CSA in methanol to yield alcohbd. Oxidatiort® of
was readily removed by treating the mixture with sodium periodate the primary alcohol to the carboxylic acid, followed by deprotection
to yield 1,3-diol12 in 71% vyield. Protection of diol2 as the bis- of the TBS ether, gave the hydroxy acid in 66% yield over two
silyl ether followed by oxidative cleavage of the PMB ether steps. The azide moiety was readily reduced to the primary amine
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Scheme 3. Preparation of Spiroketal Fragment 42 Scheme 4. Synthesis of Bistramide A2
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bistramide A (1)
H o OBn
\'/:\/VOBn a Conditions: (a) MeOH, MeNH 65 °C; (b) PyBOP,3, DIEA, DMF

Me 20 88% (two steps); (c) ENH, DMF; (d) 2, DMF 82% (two steps).

was identical in all respectsH, °C, [a]p, MS) to the natural
product. The synthesis was completed with a longest linear sequence
of 18 steps (Scheme 4).

aConditions: (a) NaHMDS, allyl iodide, THF, PhMe,;78 to —45 °C,
81%; (b) LiBHs;, MeOH, E4O, 98%; (c) E4N, DMSO, (COCI}, CH,Cly,
—78 to 25°C, 98%; (d) LiIHMDS, THF, sulfon€el?, then aldehydel6,
—78 to —20 °C, 87%,; (e) Ci(CysP)(IMes)Re=CHPh, methyl acrylate,
CH.Cly, 40 °C, 87%; (f) i, Pd/C, EtOAc; (g)p-TSA, benzene, 80C,
70% (two steps); (h) alkyn20, n-BuLi, —78 °C, then lactond9; (i) H,
Pd/C, MeOH, EtOAc, 83% (two steps); (j) PPDEAD, phthalimide, THF,
0 °C; (k) HF/pyr., THF, 84% (two steps); (I) Des#artin periodinane,
CHLCly, pyr., 92%; (m) Ba(OH) THF, MeCOCH(Me)P(O)(OE$)(23),
58%; (n) R)-CBS, catecholborane, tolueney78 °C, 65%, >98:2 dr.
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desired carboxylic acid fragmeft

Construction of the spiroketal fragmert began with an
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